Debugging shaders in Vulkan using printf
Debugging programs using printf statements is not a technique that everybody appreciates. However, it can be quite useful and sometimes necessary depending on the situation. My past work on air traffic control software involved using several forms of printf debugging many times. The distributed and time-sensitive nature of the system being studied made it inconvenient or simply impossible to reproduce some issues and situations if one of the processes was stalled while it was being debugged.
In the context of Vulkan and graphics in general, printf debugging can be useful to see what shader programs are doing, but some people may not be aware it’s possible to “print” values from shaders. In Vulkan, shader programs are normally created in a high level language like GLSL or HLSL and then compiled to SPIR-V, which is then passed down to the driver and compiled to the GPU’s native instruction set. That final binary, many times outside the control of user applications, runs in a quite closed and highly parallel environment without many options to observe what’s happening and without text input and output facilities. Fortunately, tools like glslang can generate some debug information when compiling shaders to SPIR-V and other tools like Nsight can use that information to let you debug shaders being run.
Still, being able to print the values of different expressions inside a shader can be an easy way to debug issues. With the arrival of Ray Tracing, this is even more useful than before. In ray tracing pipelines, the shaders being executed and resources being used are chosen based on the scene geometry, the origin and the direction of the ray being traced. printf debugging can let you see where you are and what you’re using. So how do you print values from shaders?
Vulkan’s debug printf is implemented as part of the Validation Layers and the general procedure is well documented. If you were to implement this kind of mechanism yourself, you’d likely use a storage buffer to save the different values you want to print while shader invocations are running and, later, you’d go over the contents of that buffer and print the associated message with each value or values. And that is, essentially, what debug printf does but in a very convenient and automated way so that you don’t have to deal with the gory details and corner cases.
In a GLSL shader, simply:
-
Enable the GL_EXT_debug_printf extension.
-
Sprinkle your code with debugPrintfEXT() calls.
-
Use the Vulkan Configurator that’s part of the SDK or manually edit vk_layer_settings.txt for your app enabling VK_VALIDATION_FEATURE_ENABLE_DEBUG_PRINTF_EXT.
-
Normally, disable other validation features so as not to get too much output.
-
Take a look at the debug report or debug utils info messages containing printf results, or set printf_to_stdout to true so printf messages are sent to stdout directly.
You can find an example shader in the validation layers test code. The debug printf feature has helped me a lot in the past, so I wanted to make sure it’s widely known and used.
Due to the observer effect, you may end up in situations where your code works correctly when enabling debug printf but incorrectly without it. This may be due to multiple reasons but one of the main ones I’ve encountered is improper synchronization. When debug printf is used, the layers use additional synchronization primitives to sync the contents of auxiliary buffers, which can mask synchronization bugs present in the app.
Finally, RenderDoc 1.14, released at the end of May, also supports Vulkan’s shader printf statements and will let you take a look at the print statements produced during a draw call. Furthermore, the print statements don’t have to be present in the original shader. You can also use the shader edit system to insert them on the fly and use them to debug the results of a particular shader invocation. Isn’t that awesome? Great work by Baldur Karlsson as always.
PS: As a happy coincidence, just yesterday LunarG published a white paper on Vulkan’s debug printf with additional information on this excellent feature. Be sure to check it out!